Lafferty Equipment Manufacturing, LLC Installation & Operation Instructions

Model # 915125SS · 1035 SS Sanitize / Rinse / LCSS Foam Hose Drop Station

REQUIREMENTS	
Chemical Concentrate	
Water	
Temperature	up to 180°F
Pressure	35 to 125 PSI
Flow	9.4 GPM @ 40 PSI
Supply Line	3/4"
Compressed Air	up to 3 CFM
Hose	
Sanitize	3/4" ID x 40'
Rinse	3/4" ID x 40'
Foam	3/4" ID x 40'
Nozzle	
Sanitize	50250
Rinse	4 Hole Rinse Nozzle
Foam	50250
OPTIONS	

OPTIONS	
Stainless Steel Hose Racks	
Large Stainless Steel Hose Rack	# 224150
Stainless Steel Jug Racks Available	
Separate Hose For Incompatible Chemicals	
Red Hose Kit, 3/4" x 40'	# 807740RQD
Alternate Check Valves - EPDM Standard	
Check Valve, Chemical, PP/Viton, 1/4"	# 491315
Check Valve, Air, SS/Viton, 1/4"	# 491306

www.laffertyequipment.com 501-851-2820

OVERVIEW

The 1035SS Sanitize/Rinse/LCSS Foam Hose Drop Station is a combination applicator for applying one chemical as foam and another as a high-volume, sanitizing spray and for rinsing. This stainless steel venturi injection system uses standard city water pressure (35 - 125 PSI) to draw and blend chemical concentrates into the water streams to create accurately diluted solutions using precision metering tips to control chemical usage. Rich, clinging foam is created by injecting compressed air into the foaming solution to greatly increase volume and coverage ability. The foaming solution is then projected through the discharge hose and fan nozzle at distances up to 12 feet. The sanitizer solution is projected as a "flooding" spray for fast complete coverage. Rinse at full pressure using a dedicated hose and unique, powerful 4-hole nozzle.

SAFETY & OPERATIONAL PRECAUTIONS

- When connecting to a potable water supply follow all local codes for backflow prevention.
- WARNING: Severe damage to your facility, or contamination of your potable water supply, can occur
 without proper backflow prevention.
- For proper performance do NOT modify, substitute nozzle, hose diameter or length.
- Manufacturer assumes no liability for the use or misuse of this unit.
- Wear protective clothing, gloves and safety goggles when working with chemicals.
- Always direct the discharge away from people and electrical devices.
- For pressures over 100 PSI, remove the discharge valve or lower pressure.
- Never leave inlet ball valves on when unit is not in use.
- Follow the chemical manufacturer's safe handling instructions.
- NEVER mix chemicals without first consulting chemical manufacturer.

TO INSTALL (REFER TO DIAGRAM ON NEXT PAGE)

- 1. Mount the unit to a suitable surface above the chemical supply to prevent siphoning.
- 2. Attach the rinse hose assembly.
- Quick connect the discharge hose to the foamer and close the ball valves. The hose is used for both foam and a compatible sanitizer. <u>If foaming and sanitizing chemicals are not compatible order a second hose assembly (see</u> options).
- 4. Connect water supply. Flush any new plumbing of debris before connecting.
- 5. Connect compressed air. If piping is older and has known contaminants, install a filter.

Set the chemical dilution ratio by threading one of the color coded metering tips into each chemical check valve. See chemical labels for dilution ratio recommendation or consult your chemical supplier.

- For the strongest dilution ratio do NOT install a colored metering tip.
- The dilution ratios in the metering tip chart are based on water thin chemicals with a viscosity of 1CPS.
- Thicker chemicals will require a larger tip than the ratios shown in the chart.
- Application results will ultimately determine final tip color.
- Select the tip color that is closest to your desired chemical strength and thread it into the tip holder. DO NOT OVER-TIGHTEN.
- Push the chemical tube over the check valve barb and place the suction tube in the chemical concentrate.
- If necessary, cut suction tube(s) to length before attaching suction strainer.

TO OPERATE

<u>Always</u> make sure the discharge is closed or pointed in a safe direction before turning water on. Discharge can be shut off at any time during operation but <u>should not be left unattended for long periods of time</u>. Expect a strong blast when re-opening the discharge ball valve or trigger gun.

TO FOAM

- 1. Securely quick connect the hose to the foam discharge plug.
- Hold the wand firmly and direct the discharge in a safe direction. Open the discharge ball valve, the foam ball valve and the air ball valve.
- 3. Make final metering tip adjustments based on application results.
 - Wait a few seconds and observe foam consistency.
 - Use the least amount of air needed to achieve good foam quality to prevent water pressure fluctuations from affecting performance. Air pressure must be kept lower than water pressure.
 - To adjust foam consistency pull out on the air regulator knob, turn slightly clockwise for dryer foam and counterclockwise for wetter foam. Wait a few seconds to see each adjustment.
 - o Medium wet foam will give the best cleaning results! Dry foam will NOT clean as well!
 - You may also have to try different sized metering tips and air settings until foam consistency and cleaning results are acceptable. Once this is set and desired foam consistency is achieved, push lock the knob. You are ready to start application.

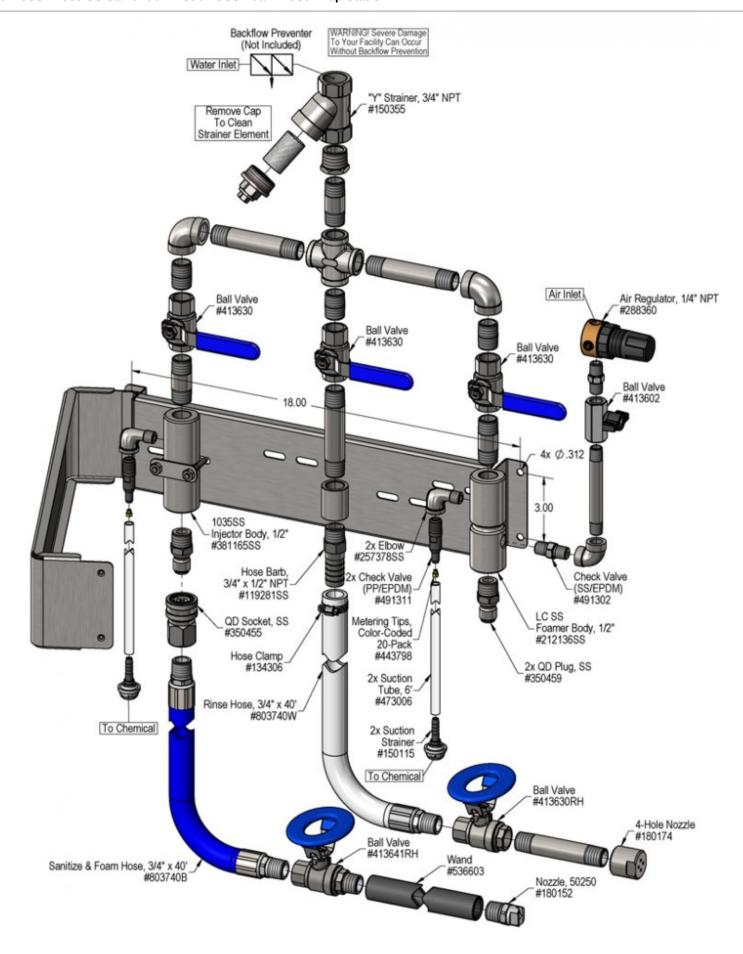
TO RINSE

- 1. With spray wand in hand and the discharge ball valve closed open the inlet ball valve.
- 2. Open the discharge ball valve to rinse.
- 3. When complete, close the discharge ball valve then close the inlet ball valve.
- 4. Briefly re-open the discharge ball valve to relieve pressure in hose.

TO SANITIZE

- Make sure to relieve pressure in the hose. Disconnect the hose from the foamer and securely quick connect it to the sanitizer discharge plug and close the ball valve.
- 2. Open the sanitize ball valve. Open the discharge ball valve and begin sanitizing.
- 3. Make final metering tip adjustments based on application results.
- 4. When sanitizing is completed, close the discharge ball valve. Then close the sanitize ball valve.
- 5. Relieve pressure in the hose. Rinse if applicable.

METERING TIP SELECTION				
METERING TIP COLOR	OZ/MIN	DILUTION RATIO @ 40 PSI		
		SANITIZE	RINSE	FOAM
Brown	0.56	2149:1	_	306:1
Clear	0.88	1367:1	_	195:1
Bright Purple	1.38	872:1	_	124:1
White	2.15	560:1	_	80:1
Pink	2.93	411:1	_	59:1
Corn Yellow	3.84	313:1	_	45:1
Dark Green	4.88	247:1	_	35:1
Orange	5.77	209:1	_	30:1
Gray	6.01	200:1	_	29:1
Light Green	7.01	172:1	_	24:1
Med. Green	8.06	149:1	_	21:1
Clear Pink	9.43	128:1	_	18:1
Yellow Green	11.50	105:1	_	15:1
Burgundy	11.93	101:1	_	14:1
Pale Pink	13.87	87:1	_	12:1
Light Blue	15.14	79:1	_	11:1
Dark Purple	17.88	67:1	_	10:1
Navy Blue	25.36	47:1	_	7:1
Clear Aqua	28.60	42:1	_	_
Black	50.00	24:1	_	_
No Tip Ratio Up To:		15:1	_	6:1
The dilution action above our consciousts welves Due to				


The dilution ratios above are approximate values. Due to chemical viscosity, actual dilution ratios may vary.

FORMULA

GPM × 128 ÷ Desired Dilution Ratio = oz/min

- See Unit Flow Rates chart for GPM
- Use 20 for 20:1 dilution ratio, 30 for 30:1, etc.
- Match calculated ounces per minute (oz/min) to nearest oz/min in Metering Tip Selection chart.

UNIT FLOW RATES				
PSI	GPM			
POI	SANITIZE	RINSE	FOAM	
35	8.79	6.73	1.25	
40	9.40	7.20	1.34	
50	10.51	8.05	1.50	
60	11.51	8.82	1.64	
70	12.44	9.52	1.77	
80	13.29	10.18	1.90	
90	14.10	10.80	2.01	
100	14.86	11.38	2.12	
110	15.59	11.94	2.22	
120	16.28	12.47	2.32	
125	16.62	12.73	2.37	

- Page 3 -

Troubleshooting Guide

Problem	Possib	Possible Cause / Solution		
	Startup	Maintenance		
A) Foam surges and/or hose "bucks".	1, 2, 3, 4, 6, 7, 8, 9, 10	12, 13, 14, 15, 16, 18, 19		
B) Foamer will not draw chemical.	1, 3, 4, 7, 8, 9, 10	12, 13, 14, 15, 16, 18, 19		
C) Foam too wet.	2, 3, 4, 6, 7, 8, 9, 10	13, 14, 15, 16, 18, 19		
D) Foam does not clean properly.	1, 4, 6, 11			
E) Using too much chemical.	5			
F) Water / Chemical backing up into air line.		17		
G) Water backing up into chemical container.		12		
H) Air or chemical solution backing up into water line.		20		

Problem	Pos	Possible Cause / Solution		
	Startup	Maintenance		
A) Sanitizer will not draw chemical.	3, 7, 8, 9, 10	12, 13, 14, 15, 18, 19		
B) Dilution is too strong.	5			
C) Dilution is too weak.	4			
D) Water backing up into chemical container.		18		

	ause / Solution
Startup	Maintenance
Air pressure too high Adjust the air regulator slowly counterclockwise until output stabilizes.	 12. Water strainer element clogged or inlet orifice clogged Clean or replace strainer element; check/clean inlet orifice for obstructions. DO NOT DRILL OUT.
2. Use of an oiler in the airline will cause poor foam quality • Use only clean, dry air.	13. Chemical strainer or metering tip partially blocked • Clean or replace chemical strainer and/or metering ti
 3. Inlet and/or discharge ball valves not completely open Completely open the inlet and (if applicable) discharge ball valves. 	 14. Chemical tube stretched out or pin hole/cut in tube ○ Cut off end of tube or replace tube. 15. Vacuum leak in chemical pick-up connections
4. Not enough chemical - metering tip too small • Install larger metering tip.	Tighten the connection. 16. Air regulator failed
5. No metering tip installed or metering tip too largeo Install smaller metering tip.	Clean or replace.17. Air check valve failed
Improper chemical Ensure product is recommended for foaming and the application.	 Clean or replace. 18. Chemical check valve stuck or failed Clean or replace.
7. Chemical tube not immersed in chemical or depleted • Immerse tube or replenish.	19. Hard water scale or chemical build-up may have formed the body causing poor or no chemical pick-up
8. Discharge hose too long or wrong size or kinked • Straighten the hose or replace hose with correct size and length.	 Follow Preventive Maintenance instructions below, using hot water or descaling acid. When there is no draw at all, carefully remove fittings and soak entire body in descaling acid.
9. Nozzle size too smallReplace nozzle with correct size.	20. No backflow preventer installed and/or inlet ball valve le
 10. Water pressure or water volume too low/inlet piping too small causing poor chemical pick up o Increase water pressure or water volume. 	on when not in use ∘ Install appropriate backflow preventer into water line.

PREVENTIVE MAINTENANCE: When the unit will be out of service for extended periods, place chemical tube(s) in water and flush the chemical out of the unit to help prevent chemical from drying out and causing build-up. Periodically check and clean chemical strainer and replace if missing.

